
Dispersion theory of effective meromorphic nonlinear susceptibilities of nanocomposites

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1998 J. Phys.: Condens. Matter 10 2483

(http://iopscience.iop.org/0953-8984/10/11/012)

Download details:

IP Address: 171.66.16.209

The article was downloaded on 14/05/2010 at 16:17

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/10/11
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter10 (1998) 2483–2488. Printed in the UK PII: S0953-8984(98)89647-1

Dispersion theory of effective meromorphic nonlinear
susceptibilities of nanocomposites

K-E Peiponen†, E M Vartiainen‡ and T Asakura§
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Abstract. Dispersion theory of the nonlinear effective susceptibilities of layered and Maxwell-
Garnett nanocomposites is considered. It is pointed out that in four-wave-mixing processes,
where the nonlinear signal has the same angular frequency as the incident light wave, the
effective nonlinear susceptibility is a complex meromorphic function. The special feature of
such effective nonlinear susceptibilities is that they possess simultaneously poles and zeros in
the upper half of the complex-angular-frequency plane. As a solution for the phase-retrieval
problem, which cannot be treated by means of Kramers–Kronig relations, an analysis based on
the maximum-entropy model is suggested.

At the beginning of this century, Maxwell-Garnett considered effective optical properties
of media containing minute metal spheres [1, 2]. He was interested in the colours of metal
glasses and of metallic films. Later, Brüggeman [3] devised a theoretical model for another
type of system involving intermixed components. These two models have provided the
basis for various standard interpretations of the linear optical properties of two-component
materials [4]. In addition, Jarrett and Ward [5] have presented a relatively general model,
dealing with ellipsoidal particles, that reproduces the major features of both of the classical
models mentioned above.

Recently, the effective nonlinear susceptibilities of nanocomposite materials have
attracted much attention due to the fact that the nonlinear susceptibility of a nanocomposite
can exceed those of the materials from which it is constructed. In other words, it is possible
to enhance the nonlinear signal by exposing a nanocomposite material to laser light. The
main cause of this phenomenon is the enhanced local electric field in the vicinity of the
nanostructure.

Models constructed for describing the effective nonlinear susceptibilities of various
structures of nanocomposites have been given in the literature. Indeed, a model that
describes the nonlinear response of ellipsoidal composites was furnished by Hauset al
[6] (see also Zenget al [7]). A model for the effective nonlinear susceptibility of Maxwell-
Garnett materials was given by Sipe and Boyd [8] who studied two-phase composites with
nonlinear inclusions and linear host materials and vice versa. Furthermore Boyd and Sipe [9]
have investigated also the nonlinear optical properties of layered-geometry nanocomposites
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and considered mathematical models for the effective nonlinear susceptibility related to
different nonlinear processes. We wish to emphasize here that layered constructions are
important, for instance in modern laser technology. Fischeret al [10] were the first to
give experimental evidence of the enhancement of the third-order nonlinear susceptibility
of layered nanocomposite structure. Nonlinear susceptibilities of Brüggeman structures have
also been considered in the case of porous-glass-based composite materials by Boydet al
[11] and by Gehret al [12]. However, general dispersion theory which can be exploited in
order to optimize the strength of the effective nonlinear susceptibility has, so far, not been
considered in the literature. Nevertheless, it is of crucial importance to take into account
the absorption–dispersion process, which is always present in the context of third-order
nonlinear processes [13]. A first step towards dispersion–absorption studies was taken by
Smith et al [14], who took into account photoinduced absorption in order to optimize the
strength of the effective nonlinear susceptibility.

Here we concentrate on the dispersion theory of the degenerate, effective, third-order,
nonlinear susceptibilityχ(3)eff (ω;ω,ω,−ω). Such a theory has not been presented in the
literature for nanocomposites. However, it has considerable importance in fundamental
studies and in practical applications.

Generally speaking, in the linear regime, the effective permittivity of nanocomposites
obeys the familiar Kramers–Kronig relations. In addition, in most cases in nonlinear optics,
nanocomposites obey Kramers–Kronig relations (for more details see the review articles
[15] and [16]). However, the assumption of holomorphicity of the effective nonlinear
susceptibility of nanocomposites, crucial for the validity of the Kramers–Kronig relations,
is no longer valid forχ(3)eff (ω;ω,ω,−ω). We have recently studied a simple model for the
total meromorphic susceptibility of two-level atoms, and suggested the solving of the phase-
retrieval problem by means of an analysis based on the maximum-entropy model [17]. It
turns out thatχ(3)eff (ω;ω,ω,−ω) is also a meromorphic function in the complex plane.

In this paper we present evidence that the maximum-entropy model is at the moment
the only solution for the phase-retrieval problem of nanocomposites whose nonlinear optical
signal is characterized byχ(3)eff (ω;ω,ω,−ω). We wish to emphasize that in most cases

the only information that is available relating to the complex-valued functionχ
(3)
eff is the

intensity, which is proportional to|χ(3)eff |.
As an example, let us consider the effective nonlinear susceptibilities of layered and

Maxwell-Garnett two-phase nanocomposites. For layered nanocomposites it holds that, in
the case where the incident electric field has a component perpendicular to the plane of the
layers,

χ
(3)
eff (ω;ω,ω,−ω) =

(
faχ

(3)
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(1)

wherefa andfb are the volume fractions of the two componentsa andb, χ(3)a andχ(3)b are
the corresponding nonlinear susceptibilities and, in addition,εa andεb are the permittivities
of the two components. For Maxwell-Garnett nanocomposites, and for the sake of simplicity
taking the inclusion particles(a) to be nonlinear and the host material(b) to be linear, we
can write [8] this as follows:

χ
(3)
eff (ω;ω,ω,−ω) = fa

∣∣∣∣εeff + 2εb
εa + 2εb

∣∣∣∣2 [εeff + 2εb
εa + 2εb

]2

χ(3)a (ω;ω,ω,−ω) (2)
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where

fa
εa − εb
εa + 2εb

= εeff − εb
εeff + 2εb

(3)

andfa is the filling fraction.
In both cases the functionsχ(3)eff are meromorphic, sinceχ(3)a andχ(3)b are meromorphic,

i.e. they possess poles in both half-planes. For qualitative purposes they can be described for
instance by the model for the third-order nonlinear susceptibility of two-level atoms of Yariv
[18]. Nevertheless, meromorphism has already arisen, due to the squared moduli given by
the permittivities, in equations (1) and (2). In addition to the poles that now appear in the
upper and lower half-planes, one can find complex zeros in the upper half-plane. In the
case of equation (2), the number of zeros depends on the spectral features ofεa. Due to the
existence of zeros and poles in the upper half-plane we have a function that is meromorphic
but can be termed holomorphic almost everywhere. Logical foundations of the dispersion
theory in linear optics, developed in order to treat problems where a function has zeros in
the upper half-plane, and is holomorphic in the upper half-plane, but in addition possesses
poles in the lower half-plane, were given by Toll [19]. However, in his treatment, poles
and zeros were located in the opposite half-planes in a symmetric manner; therefore the
phase retrieval could be managed by introducing a Blaschke product [19, 20]. The case of
the effective meromorphic nonlinear susceptibility of nanocomposites is totally different, as
described above. We are in trouble in the phase-retrieval problem if poles and zeros appear
simultaneously in the upper half-plane, since the zeros and poles of the logarithm function,
ln |χ(3)eff |, are essential singularities.

One attempt at solving the problem of phase retrieval from the modulus of the
effective, degenerate, meromorphic, nonlinear susceptibility is based on the application
of the maximum-entropy model (MEM). In this model the measured data are fitted by the
model [21]

|χ(3)eff (ν)| = |β|
/∣∣∣∣∣1+ M∑

k=1

ck exp(−i 2πkν)

∣∣∣∣∣ (4)

using a so-called squeezing procedure (with the squeezing parameterK > 1). The unknown
MEM coefficients ck and |β| are obtained from a set of linear Yule–Walker equations
(the detailed procedure is explained in [21]). The variableν is a normalized frequency
ν = (ω − ω1)/(ω − ω2), where [ω1, ω2] is a finite measurement range. Thus, unlike in
Kramers–Kronig analysis, no data extrapolations are carried out in the MEM procedure.
However, sinceχ(3)eff (ω;ω,ω,−ω) is to be retrieved from its ME model

χ
(3)
eff (ν) = |β| exp[−iθerr (ν)]

/(
1+

M∑
k=1

ck exp(−i 2πkν)

)
(5)

where the unknown error phaseθerr is estimated by a polynomial

θ̂err (ν) = B0+ B1ν + · · · + BLνL =
L∑
l=0

Blν
l (6)

we needL+ 1 ellipsometric measurements (i.e. measurements of the phase ofχ
(3)
eff ) in the

range [ω1, ω2] to get the coefficientsBl . The squeezing procedure makesθerr more linear
(i.e. reducesL). As an example, we show in figure 1 the results of MEM calculations (with
K = 1) where the real and imaginary parts ofχ(3)eff were resolved from the modulus of the
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(a)

(b)

(c)

Figure 1. (a) The square of the modulus of the effective nonlinear susceptibility of a Maxwell-
Garnett nanocomposite, and (b) the real part and (c) the imaginary part. The arrows denote the
energies at which the phase is assumed to be known. The parameters used in calculation were
fa = 0.2, Aa = 30,Ab = 50,ωa = 3.0, ωb = 4.5, 0a = 1.0, 0b = 1.0, B = 0.5, ωr = 3.0 and
0r = 1.0.
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effective, meromorphic, nonlinear susceptibility of the Maxwell-Garnett nanocomposite of
equation (2). In the Maxwell-Garnett model we used the Lorentzian permittivities

εj = 1+ Aj

ω2
j − ω2− i0jω

(7)

where j = a or b. The degenerate third-order nonlinear susceptibility of the inclusion
particles was chosen to be

χ(3)a (ω;ω,ω,−ω) = B

|D(ω)|2D(ω)2 (8)

whereD(ω) = ω2
r − ω2 − i0rω. This model has been used for the qualitative description

of semiconductors [22]. The squared modulus of the degenerate nonlinear susceptibility is
presented in figure 1(a). We observe from figures 1(b) and 1(c) that the real and imaginary
parts are quite well estimated by the MEM when additional phase data are known for four
angular frequencies (i.e.L = 3 in equation (6)) denoted by arrows in figures 1(b) and 1(c).
Compared with our earlier MEM calculations [21], it seems that a successful phase retrieval
requires more additional information in the case of a meromorphic susceptibility than in the
case of a holomorphic susceptibility.

The case where the host material is nonlinear and inclusion particles linear calls for
slightly more complicated meromorphic functions than that of equation (2). As regards their
detailed expressions, here we merely refer the reader to the paper of Sipe and Boyd [8].
Nevertheless, zeros and poles in the upper half-plane can also be found for such materials and
dispersion analysis by the MEM procedure can be carried out. Detailed MEM calculations
for the effective, meromorphic, nonlinear susceptibility of layered nanocomposites will be
considered elsewhere.

Finally we remark that, in principle, the existence of both poles and zeros can be
established and their numbers can be estimated using the argument theory of complex
analysis. Another method would be to apply Jensen’s formula for meromorphic func-
tions [17].

In conclusion, we state that the meromorphic, nonlinear susceptibility of two- (or multi-)
phase nanocomposites has special features and differs drastically from a one-phase system
in the context of dispersion theory. One can find poles located in the upper plane and
half-planes—we deal with either a meromorphic two-phase or one-phase system (described
e.g. by equation (8)). However, with the meromorphic, nonlinear, two-phase system there
appear complex zeros that are due to the permittivity of the composition, in both half-
planes, whereas the meromorphic, nonlinear susceptibility of the constituent is in that sense
‘well behaved’ because its expression has the property of introducing poles not zeros (see
equation (8)).

The MEM procedure was shown to be applicable to the phase-retrieval problem of
two-phase nanocomposites.
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